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Abstract Since the recognition of HIV-1 integrase as a
novel and rational target for HIV therapeutics, remarkable
progress has been made in the development of integrase
inhibitors. Computational techniques have played a critical
role in accelerating research in this area. However, most
previous computational studies were based solely on ligand
information. In the present work, we describe the applica-
tion of one of our recently developed receptor-based
3D-quantitative structure activity relationships (QSAR)
methods, i.e. comparative residue interaction analysis
(CoRIA), in exploring the events involved in ligand-
integrase binding. In this methodology, the non-bonded
interaction energies (van der Waals and Coulombic) of the
inhibitors with individual active site residues of the
integrase enzyme are calculated and, along with other
thermodynamic descriptors, are correlated with biological
activity using chemometric methods. Different combina-
tions of descriptors were used to develop three types of
QSAR models, all of which were found to be statistically
significant by internal and external validation. This is the
first report of such a dedicated receptor-based 3D-QSAR
approach being applied to comprehend the integrase–
inhibitor recognition process. In addition, the study was
performed on 13-different series of inhibitors, thereby
exploring the most structurally diverse data set ever used
in understanding the inhibition of HIV-1 integrase. The

major advantage of this technique is that it can quantita-
tively extract crucial residues and identify the nature of
interactions between the ligand and receptor that modulate
activity. The models suggest that Asp64, Thr66, Val77,
Asp116, Glu152 and Lys159 are the key residues influenc-
ing the binding of ligands with the integrase enzyme, and
the majority of these results are in line with earlier studies.
The approach facilitates easy lead-to-hit conversion and
design of novel inhibitors by optimisation of the interaction
of ligands with these specific residues of the integrase
enzyme.

Keywords CoRIA . Docking . G/PLS . HIV Integrase .

QSAR

Introduction

Human immunodeficiency virus type 1 (HIV-1) is the
primary cause of acquired immuno-deficiency syndrome
(AIDS)—a slow, progressive and degenerative disease of
the human immune system that has been one of the world’s
most serious health problems since 1981 [1–3]. The
estimated number of persons living with HIV worldwide
in 2007 was 33.2 million and about 2.1 million people died
due to AIDS in the same year [4]. Despite the gravity of the
situation, only a few anti-HIV drugs have been approved by
the FDA and are currently available for clinical use. The
therapy currently employed for HIV infection is a combi-
nation of inhibitors of the reverse transcriptase and protease
enzymes, known as triple therapy or highly active anti-
retroviral therapy (HAART). Although this therapy has
drastically decreased viral spread and led to significant
improvements in the quality of life of AIDS patients [5],
problems like tolerability, tapered antiviral spectrum, long-
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term toxicity, high cost, lack of efficacy against latent virus,
complexity of the drug regimen, development of resistance,
high mutation rate and poor patient compliance are some of
the reasons for the unabated search for new drugs in this
area with novel structures or mode of action [6–8].

Three enzymes that play significant roles in the
replication of HIV are reverse transcriptase, protease and
integrase. HIV reverse transcriptase catalyses the conver-
sion of the single-stranded viral RNA genome into the
double-stranded proviral DNA, which is subsequently
integrated into cellular DNA. HIV protease cleaves a key
polypeptide that is essential for the successful assembly of
infectious daughter virions. HIV integrase catalyses the
integration of viral DNA into the host DNA in two steps:
3′-processing and strand transfer. Amongst the various
targets that have been identified for the development of
anti-HIV agents, these three enzymes are considered the
most promising [9]. Reverse transcriptase and protease
have been the primary focus of research against HIV/AIDS
over the last two decades. HIV-1 integrase has now been
recognised as another crucial and rational target for
inhibiting viral replication, mainly because, in addition to
being obligatory in the HIV lifecycle, it has no known
direct cellular counterparts in the host cell, thereby allowing
design of specific and non-toxic inhibitors [9–12]. Remark-
able progress has been made since integrase was recognised
as a rational therapeutic target for the treatment of HIV
infection. Recombinant integrase can be readily produced
and used for high-throughput and molecular pharmacology
assays. Several atomic structures of the integrase domains
are also now available for docking studies [13]. Recently,
an integrase inhibitor from Merck, Raltegravir (MK-0518),
was approved by the United States FDA for use in
combination antiretroviral therapy for the treatment of
HIV-1 [14, 15].

Various efforts have been made by researchers to
develop potential integrase inhibitors and to throw more
light on the ligand–receptor recognition process. Most of
these endeavours include computational studies such as
pharmacophore modelling and 3D-database searching [16–
27], classical and multi-dimensional quantitative structure
activity relationships (QSARs) [28–50], docking and de
novo drug design [37, 51–63], and molecular dynamics
(MD) simulations [64–72]. Recently, comprehensive
reviews summarising the use of such computational
techniques in the development of HIV-1 integrase inhibitors
have been published [73, 74]. Except for a few studies [26,
41, 54, 58] that have hypothesised some residues of the
receptor to be vital for ligand binding, none have
commented on the important residue types and the nature
of interactions involved in ligand–receptor binding. In this
paper, we report an application of one of the newer 3D-
QSAR methodologies developed in our laboratory—com-

parative residue interaction analysis (CoRIA) [75–77]—to a
data set of 81 molecules belonging to a comprehensive set
of 13 structurally different classes of HIV-1 integrase
inhibitors, in order to glean critical information regarding
the interactions of the inhibitors with residues in the active
site of the receptor. This methodology, which is based on
the thermodynamics of the ligand–receptor binding process,
explicitly takes into consideration the wealth of information
contained in the available ligand–receptor complexes to
uncover both qualitative as well as quantitative facets of
binding. CoRIA involves calculation of the interaction
energies (usually non-bonded, i.e. van der Waals and
Coulombic) of every ligand with each individual residue
in the active site of the receptor, which, along with other
thermodynamic descriptors, are used as independent vari-
ables that can be correlated to the biological activity/affinity
by chemometric methods. The approach is capable of
extracting crucial residues of the receptor that are involved
in a specific type of interaction (van der Waals and
Coulombic) with the ligand. Such information can profit-
ably be utilised by medicinal chemists in designing new
compounds or in optimising existing leads. Although some
related methodologies like COMBINE (comparative bind-
ing energy) [78] and AFMoC (adaptation of fields for
molecular comparison; a reverse variant of CoMFA) [79]
do exist, this is the first time that this kind of approach has
been applied to study the inhibition of HIV-1 integrase
enzyme. Also, the data set employed in the study is the
most diverse (covering 13 different series of HIV-1
integrase inhibitors) ever used in this type of application.

Methods

Biological data

The biological data used in this study comprises 81
molecules belonging to 13 structurally different classes of
HIV-1 integrase inhibitors that were selected from the
literature so as to maintain the spread of biological activity
and structural diversity within and between the series.
These molecules are derivatives of the following classes:
arylamide and naphthalene [80], geminal disulfones [81],
coumarins [82], salicylhydrazines [83] or hydrazides [84],
indole β-diketo acids [61], thiazolothiazepines [85], quino-
linone-3-carboxamides [86], curcumins [87], mercaptoben-
zenesulfonamides [41], sulfonamides [16], tyrphostins [88],
diarylsulfones [89], depsides and depsidones [18]. The
inhibitory activities of all these molecules were measured
on a wild-type integrase enzyme by the same protocol and
are reported as IC50 values. The IC50 values were converted
to negative logarithmic values (i.e. pIC50), which range
from 3.18 to 6.43 units. Table 1 lists the molecules used in
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this study along with their experimental pIC50 values. The
molecules were divided into a training set consisting of 61
molecules and a test set of 20 molecules (as indicated in
Table 1) based on the Tanimoto coefficient using the ‘select
diverse’ utility in Cerius2 (v 4.6) [90]. The structures of the
molecules used in this study can be found in the electronic
supplementary material (ESM).

Molecular modelling

Molecules were built with the builder module in Sybyl v 7.1
[91] running on a Pentium IV computer under the Linux
RedHat Enterprise 2.1 OS. The ligand geometries were
optimised by energy minimisation using the Powel gradient
method with the MMFF94 charges [92], until a gradient of
0.01 kcal/mol/Å was reached. To date, only one crystal
structure of HIV-1 integrase complexed with the molecule 5-
CITEP [93] (PDB code 1QS4) is available in the Protein Data
Bank [94], and this was used for the modelling studies. The
errors in the crystal structure were rectified and hydrogens
were added equivalent to pH 8.0 using the Biopolymer
module in Sybyl 7.1 [95], resulting in a +1 charge for
arginines and lysines, and a −1 charge for aspartates and
glutamates. Since histidines are non-ionised at this pH, they
were used per se in this study. The ligand–receptor complex
was energy minimised using steepest descents and conjugate
gradients to a maximum derivative of 0.01 kcal/mol/Å.
During minimisation, the ligand atoms were allowed free
movement but the enzyme backbone atoms were tethered
with a force constant of 100 kcal/mol/Å2. The same protocol
was followed for all the ligands.

For ligand docking, residues within a 10 Å radius from 5-
CITEP were defined as the active site. The docking studies
were carried out with the program GOLD (v 3.1) [96], which
uses a genetic algorithm (GA) procedure to identify the best
binding configuration. The program was run for 20 GA
cycles, which was found optimal to reproduce the X-ray-
derived position of 5-CITEP in the integrase enzyme, with an
acceptable root mean squares derivative (rmsd) value of less
than 1.0. Most of the other GA parameters, like population
size, as well as the genetic operators were kept at their default
values. The putative binding (bioactive) conformations of the
inhibitors in the integrase active site were determined on the
basis of Gold score and visual analysis. The enzyme–inhibitor
complexes thus obtained were used for the computation of the
non-bonded interaction energies. The other descriptors (vide
infra) were calculated for ligands extracted from this bound
conformation.

Computation of descriptors for CoRIA approach

Ligand–receptor binding is governed by thermodynamic
events like interaction, solvation and entropy changes, all of

Table 1 Molecules used in this study, and their experimental pIC50

values

Molecule pIC50 Set Molecule pIC50 Set

Arylamides and
naphthalenes

Curcumins

01 4.48 Training 45 3.92 Training
02 3.76 Test 46 3.82 Training
03 4.27 Training 47 5.22 Test
04 6.01 Training 48 4.74 Training
Geminal
disulfones

49 5.05 Training

05 4.15 Training Mercaptobenzenesulfonamides
06 5.39 Test 50 4.78 Training
07 4.30 Training 51 5.44 Training
08 4.52 Training 52 5.09 Training
09 4.10 Training 53 4.29 Training
Coumarins 54 4.10 Training
10 5.82 Test 55 4.22 Training
11 4.09 Test 56 4.12 Test
12 4.26 Training Sulfonamides
13 4.24 Training 57 4.62 Training
14 4.46 Test 58 5.08 Training
15 5.02 Training 59 4.12 Test
16 4.76 Training 60 4.31 Training
17 6.43 Training 61 3.89 Training
Salicylhydrazines
and hydrazides

62 3.71 Training

18 3.54 Training 63 3.61 Test
19 4.14 Training Tyrphostins
20 6.22 Training 64 5.52 Training
21 5.85 Test 65 5.48 Training
22 5.17 Training 66 6.35 Test
23 5.63 Training 67 6.00 Training
24 4.13 Training 68 5.33 Training
Indole-β-diketo
acids

Diarylsulfones

25 4.30 Training 69 3.53 Test
26 4.96 Test 70 3.81 Training
27 4.79 Test 71 4.79 Training
28 4.60 Test 72 3.93 Training
29 4.00 Training 73 4.49 Training
30 4.34 Training 74 4.72 Test
31 4.92 Training 75 4.23 Training
Thiazolothiazepines Depsides and depsidones
32 3.18 Training 76 5.33 Training
33 3.67 Training 77 5.26 Training
34 3.62 Training 78 5.31 Training
35 3.69 Training 79 4.28 Training
36 4.55 Test 80 4.21 Test
37 4.07 Training 81 5.43 Test
Quinolinone-3-carboxamides
38 5.39 Training
39 4.30 Training
40 4.08 Training
41 4.82 Training
42 4.14 Training
43 4.09 Test
44 4.00 Training
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which are accounted for in the CoRIA approaches
described below.

Interaction energies

Since most biological processes are determined by specific
non-covalent (non-bonded) interactions between ligands
and receptors, these are accounted for in CoRIA method-
ology. This completely enthalpic contribution is equal to
the difference between the total energy of the complex and
the energy of the free protein and free ligand. The key
components of the non-bonded interaction energy are van
der Waals (Evdw) and electrostatic (Eele) interactions
between the ligand and the receptor, which are functionally
computed as follows:

Evdw¼ Aij

r12ij
� Bij

r6ij

Eele¼
qiqj
"rij

where Aij and Bij are the repulsive and attractive terms
between atoms i and j, respectively; rij is the interatomic
distance between atoms i and j; qi and qj are the atomic
charges of interacting atoms i and j; respectively; and ε is
the dielectric constant. The van der Waals and Coulombic
interaction energies were computed using the CFF91 force
field [97] in the Discover module of the program InsightII
[98].

A total of 72 interacting residues within a radius of 10 Å
from the ligand are accounted for in the CoRIA approach.
Thus, for each molecule, there are 72 entries each (i.e.
columns) in the QSAR table, corresponding to the van der
Waals, Coulombic and total non-bonded (TNB: van der
Waals plus Coulombic) interactions.

Solvation free energy

The solvation free energy (SFE) of the ligand under
physiological conditions is the hydration free energy, and
is equal to the difference between the free (e.g. cellular) and
the bound state. The SFE refers to the amount of energy
needed to strip the solvent molecules off the ligand when
shifting from aqueous surroundings to a hydrophobic
receptor cavity. The electrostatic contribution to the SFE
of the ligands was computed using the method developed
and validated by Still et al. [99] and implemented in the
Prepare module of the program QUASAR [100].

Strain energy

Another important term in binding that is taken into
account in the CoRIA approach is the conformational
change in the ligand that occurs during the binding process.
During ligand–receptor binding, the conformational change
in the ligand, which is much more pronounced compared
than that of the receptor, can be described by the strain
energy (SE) upon binding. This can be calculated with a
molecular mechanics potential function as the energy
related to changes in bond lengths, angles, torsions and
non-covalent interactions. The ligands were extracted from
their complexes and subsequently minimised using several
steps of steepest descents, conjugate gradients and Newton
Raphson (BFGS) methods, until a maximum energy
derivative of 0.001 kcal/mol/Å was reached. SE was finally
computed as the difference in the energy of the ligands in
their docked conformations and the conformations mini-
mised in vacuo.

Entropy loss

Entropy loss (EL) corresponds to the loss of torsional,
vibrational, rotational and translational free energies of the
ligand upon binding with the receptor. This loss of entropy,
which results from abridged conformational flexibility upon
receptor binding, is estimated based on the method of
Searle and Williams [101] by assigning an amount of
0.7 kcal/mol to every freely rotatable (i.e. single) bond,
excluding the terminal –CH3 groups, and was calculated
with the Prepare module in the program QUASAR [100].

Solvent accessible surface area

Solvent accessible surface area (SASA) corresponds to the
residual surface of the ligand that is still accessible to the
solvent after it has bound to the receptor. SASA is usually
associated with the tightness and roughly with the depth,
strength and number of binding interactions with the
receptor active site. SASA was also estimated with the
Prepare module in the program QUASAR [100].

Statistical analysis

All QSAR models were generated with the G/PLS
chemometric method as implemented in the Cerius2
program (v 4.6) [90], which brings together the para-
mount features of the genetic function approximation
(GFA) [102] and the partial least squares (PLS) [103]
approaches. Pretreatment of the data based on a correla-
tion matrix was avoided in view of the fact that interaction
energies are not absolutely orthogonal, i.e. they tend to be
partially correlated to each other numerically but in terms
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of interpretation they may convey different information.
All descriptors in the dataset were scaled to zero mean and
unit standard deviation, by subtracting each value in a
given column from the column mean and then dividing it
by the standard deviation of that column. The sole purpose
of this scaling was to allocate equal weight to all the
descriptors and place them on the same platform for
meaningful statistical analysis. Only linear terms were
used to develop the QSAR models, and the optimal
number of components selected was six, at which the
crossvalidated r2 (i.e. q2) was found to be the maximum.
In order to facilitate simple interpretation and easy use of
the models in designing new ligands, the length of the
equations was confined to seven terms (including the
constant) for which the r2 and PRESS (predictive residual
sum of squares) values were found to be optimum. The
number of generations was set to 10,000 and population
size to 500. Crossover and mutation probabilities of 50%
(default settings) were employed, with a smoothness
parameter of 1.0 (the smoothness function penalises the
equations on their size and thus controls for bias in the
scoring factor between equations with different numbers
of terms). The models developed with a training set of 61
molecules were internally validated using randomisation
at 99% confidence interval, leave-one-out (LOO), leave-
group-out (LGO, group of 5) and by boot-strapping
techniques [104]. Externally, the models were assessed
for their predictive power on a test set of 20 molecules.

Results and discussion

Three different QSAR models were developed using
various combinations of the descriptors. In Model 1,
Coulombic (C) and van der Waals (V) interaction energies
between the ligands and residues in the receptor active site
were considered for the construction of the CoRIA
equations (i.e. C+V). Model 2 included different events
leading to ligand–receptor binding, i.e. SE, SFE, EL, and
SASA, in addition to the Coulombic and van der Waals
terms (i.e. C+V+SE+SFE+EL+SASA). Model 3 incorpo-
rated additionally TNB interaction energies (TNB = C+V),
besides the terms engaged in Model 2 (i.e. C+V+TNB+SE+
SFE+EL+SASA).

The statistical analysis and the best QSAR equations of
the models developed are reported in Tables 2 and 3,
respectively. The models generated by the CoRIA approach
are statistically significant, with correlation coefficients (r2)
varying from 0.76 to 0.80. After randomisation of the
activity data, the r2 values decrease to smaller numbers,
indicating that the correlations developed are not a result of
chance. Cross-validation by LOO and leave-five-out tech-
niques resulted in statistically acceptable q2 values. The
bootstrapping results further supported the sturdiness of the
models. The predictive r2 of all the models on the test set of
20 molecules is also more than 0.6, indicating a good
extrapolative power of the models for molecules not
covered in the training set.

Table 2 Statistical analysis of the comparative residue interaction analysis (CoRIA) models

Model r2 r2 (BS) r2 (random) q2 by LOO q2 by LGO r2pred

1 0.76 0.71 0.07 0.37 0.35 0.63
2 0.79 0.79 0.11 0.30 0.32 0.64
3 0.80 0.80 0.11 0.35 0.34 0.65

The number of molecules in the training and test sets are 61 and 20 respectively. r2 correlation coefficient, r2 (BS) mean values of r2 from
bootstrap analysis; r 2 (random) mean value of r2 after randomisation at 99% confidence interval, q2 by LOO cross-validation correlation
coefficient by leave-one-out, q2 by LGO cross-validation correlation coefficient by leave-group-out (group of 5), r2pred predictive correlation
coefficient of test set

Table 3 Best quantitative structure activity relationships (QSAR) models developed by the CoRIA approach

Model Best QSAR equation

1 pIC50=4.59–0.20 (V_Asp64) - 0.55 (C_Thr66) + 0.49 (V_Lys159) - 0.22 (V_Asp116) + 0.60 (C_Val77) + 0.15 (V_Glu152)
2 pIC50=4.62 - 0.21 (V_Asp64) - 0.19 (V_Asp116) + 0.45 (V_Lys159) - 0.51 (C_Thr66) - 0.10 (V_Leu68) + 0.48 (C_Val77)
3 pIC50=4.53 + 0.20 (TNB_Val176) - 0.07 (V_Asp116) - 0.33 (C_Thr66) + 0.23 (V_Lys159) - 2.45 (C_Gly149) - 0.04 (V_Asp64)

C Coulombic interactions, V van der Waals interactions, V_Asp64 van der Waals interaction of the ligand with the receptor residue Asp64,
C_Thr66 Coulombic interaction of the ligand with the receptor residue Thr66, TNB_Val176 total non-bonded (TNB) interaction of the ligand with
the receptor residue Val176
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The plots of experimental vs predicted pIC50 values of
the molecules in the training and test sets for all the models
are shown in Fig. 1. The ten best equations of each model
were examined for the frequency with which a particular
term appears in the population of equations. The plots of
the most repeatedly occurring descriptors for different
models are shown in Fig. 2. The frequency of occurrence
of different descriptors is shown on the x-axis, whereas the
signs of the terms in the equations are shown on the y-axis.
Terms with positive coefficients in the equations are
displayed as positive frequency values, whereas those with
negative coefficients appear with negative frequencies.

A comprehensive analysis of the CoRIA models is
described below. However, while interpreting the results,
one should bear in mind that the more negative the value of
the van der Waals and Coulombic interaction energies, the

stronger the interaction between ligand and receptor. This
means that positive values of these interaction energies
entail weaker ligand–receptor interactions and vice versa.
However, it is the sign of the coefficient of these
descriptors/terms in the QSAR equations that will ulti-
mately decide whether to strengthen/increase (i.e. make the
interaction energy more negative) or weaken/decrease (i.e.
make the interaction energy relatively more positive) the
interaction, in order to improve binding.

CoRIA analysis

In the CoRIA approach, the van der Waals and Coulombic
interaction energies of the ligand with individual active site
residues of the receptor are calculated, and correlated with
biological activity along with other important descriptors.

Fig. 1 Plots of experimental vs
predicted pIC50 values of the
integrase inhibitors in the train-
ing and test sets for the best
comparative residue interaction
analysis (CoRIA) models
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An assessment of all the CoRIA models (Table 3) reveals
that almost the same set of amino acids appear in all the
CoRIA models, indicating that these residues are significant
in the interactions. The models suggest that Asp64, Thr66,
Val77, Asp116, Glu152 and Lys159 are the major residues
influencing the binding of ligands with the receptor. The
van der Waals interactions of the ligand with receptor
residues Asp64 and Asp116 appear with negative coef-
ficients in the equations (Fig. 2). This indicates that the
biological activity can be amplified by strengthening the
van der Waals interactions of the ligands with these
residues of the integrase enzyme. Similarly, enhancing the
vigour of the Coulombic interaction of the ligand with
Thr66 will increase the binding affinity, due to the negative
coefficient of this interaction in the equations (Fig. 2). On
the other hand, because of the positive coefficient of the
Coulombic interaction of the ligand with residue Val77
(Fig. 2), an overall positive value of the Coulombic
interaction energy of the ligand with this particular amino
acid will favour binding. Interaction of the ligand with
receptor residues Glu152 and Lys159 appears to be very
sensitive, thereby recommending cautious modifications to
optimise activity.

It is worth mentioning that most of the residues in the
integrase enzymes that are designated as imperative for
ligand binding by CoRIA models, have also been consid-
ered vital by previous studies including X-ray crystallogra-
phy, computational and mutation studies [54, 58, 64, 93,
105–108]. For example, using docking, Sotriffer et al. [54]
have suggested that Lys159 is one of the anchor points for
tight binding of inhibitors. Binding of ligands is further
complemented by favourable interaction with Thr66. Based
on docking and molecular interaction field analysis, da
Silva and co-workers [58] have proposed that inhibitors

should possess polar groups that can interact via electro-
static interactions with Asp64 and Thr66. Lins et al. [64]
used MD to demonstrate the role of Asp64, Asp116 and
Glu152 in enzyme stability and ligand binding. Several
residues near the integrase active site (e.g. Lys159) have
been recognised by site-directed mutagenesis and photo-
crosslinking studies to be crucial for binding the substrate—
viral DNA—and also the inhibitor [93]. In the present study,
favourable Coulombic interactions of the ligand with
receptor residues Gly149 and Val72 also appear in the
QSAR equations (Fig. 2), but their frequency of occurrence
is too low to be utilised profitably for improving the activity.
Besides the above-mentioned terms, a few other residues,
such as Leu68, Val74, and Lys160, have also been exposed
by CoRIA to be crucial in regulating activity. Though no
earlier study or point mutation data have yet been reported
showing the significance of these residues in integrase
inhibition, according to CoRIA the interactions of inhibitors
with these amino acids are critical for the ligand–receptor
recognition process.

The final set of CoRIA models did not contain any of the
thermodynamic descriptors like solvation, entropy, strain
energy, etc, despite assigning equal weight to all the
descriptors and avoiding any bias in their selection during
model development. However, they do appear briefly
during the evolution process of the genetic algorithm but
then unfortunately die down as the function converges. It
seems that, for the present dataset, these terms may not be
the dominant factors in overall ligand–receptor binding, and
the interaction of the molecules with specific active site
residues of the integrase enzyme alone are sufficient to
explain the disparity in biological activity. Also, the quality
and applicability of the CoRIA models can be significantly
augmented by improving various aspects like solvation of
the entire ligand–receptor complexes and sampling impor-
tant configurations using simulation methods (e.g. MD or
Monte Carlo simulations), calculation of interaction ener-
gies using more accurate and reliable techniques (e.g. ab
initio or DFT calculations), and incorporating other types of
important interactions (e.g. hydrogen-bonding, hydropho-
bicity, etc) into model development.

Rationalisation of CoRIA approach

It is evident from the CoRIA equations that Coulombic
interaction of the ligands with receptor residue Thr66, and
van der Waals interaction with residues Asp64 and Asp116
needs to be maximised to improve activity. Figure 3 shows
molecule 38 (Table 1) surrounded by important active site
residues as revealed by the CoRIA equations. The crucial
descriptors that appear in the CoRIA models, along with
their values for some selected molecules, are shown in
Table 4. The table demonstrates how the values of these

Fig. 2 Frequency plots of descriptors appearing in the equations of
the CoRIA models. C Coulombic interactions, V van der Waals
interactions, V_Asp64 van der Waals interaction of the ligand with the
receptor residue Asp64, C_Thr66 Coulombic interaction of the ligand
with the receptor residue Thr66
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descriptors (interaction energies) commensurate with the
significant differences in the activities of pairs of molecules
belonging to the same chemical class. For example, in the
salicylhydrazines/hydrazides series, molecule 20 (Table 1)
is more active than molecule 22 because of its increased
(comparatively more negative) Coulombic interaction with
residue Thr66 as well as its strong (comparatively more
negative) van der Waals interactions with receptor residues
Asp64 and Asp116. Similarly, modification of –CH3

(molecule 25, Table 1) to –CH2CH3 (molecule 27, Table 1)
in the indole β-diketo acids class causes an increase in
activity by half a log unit. This boost in activity is also due
to an increase in the strength of its Coulombic interaction
with Thr66 and an increase in its van der Waals interactions
with Asp64 and Asp116. It is apparent from this table that
the interaction of the molecules with some specific residues
of the integrase enzyme (as revealed by the CoRIA

models), are clear reflections of their biological activities,
and thereby firmly justifies the CoRIA equations that
emerge from this study.

The predictive ability of the CoRIA models was
validated by an attempt to predict the activity of 5-CITEP,
whose complex with HIV-1 integrase is known [93] (PDB
code 1QS4, this molecule was not considered in the CoRIA
analysis). The interaction energies of 5-CITEP with the
important active site residues revealed by the CoRIA
models were calculated, and its activity was predicted by
substituting the interaction energies into the best QSAR
equations of the three CoRIA models (Table 3). The
activity of the 5-CITEP molecule as predicted by the
CoRIA models is shown in Table 5.

The suggestions of the CoRIA models were also used as
guidelines to rationally modify the inhibitors so as to
improve their activity. For example molecule 31 (Table 1),

Table 4 Crucial CoRIA descriptors and their values for some selected molecules

Molecule pIC50 C_Thr66 (-)a V_Asp64 (-) V_Asp116 (-) V_Glu152 (+) V_Lys159 (+)

20 6.22 −1.26 −1.03 −0.18 −0.60 1.23
22 5.17 −0.74 −0.77 0.11 −0.82 1.45
25 4.30 −0.29 −0.24 −0.28 0.78 0.42
27 4.79 −0.33 −0.36 −0.34 0.75 0.42
38 4.39 0.24 −0.18 −0.24 −0.76 0.15
44 4.00 0.63 0.18 −0.09 −0.72 0.17
46 3.82 −0.01 −0.45 −0.07 −0.71 0.15
49 5.05 −0.29 −0.43 −0.06 −0.36 0.15
77 5.26 −1.21 −0.56 −0.12 −0.40 0.03
79 4.28 −0.98 −0.57 0.45 −0.32 0.25

C Coulombic interactions, V van der Waals interactions, V_Asp64 van der Waals interaction of the ligand with the receptor residue Asp64,
C_Thr66 Coulombic interaction of the ligand with the receptor residue Thr66
a + and − signs in parenthesis refer to the signs of the coefficients of the respective descriptor in the QSAR equations

Fig. 3 An InsightII [98]-gener-
ated stereoview of the active site
of HIV-1 integrase enzyme
showing molecule 38 (green,
heavy atoms only) with the
important active site residues
(blue, heavy atoms only) that are
highlighted by the CoRIA
equations
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an indole β-diketo acid derivative, was structurally modi-
fied based on the results of CoRIA, by substituting a
hydroxyl group at the para position of the benzyl group.
The new molecule was minimised, docked into the active
site and its interaction energies with important residues
(recommended by CoRIA models) calculated according to
the protocols described earlier. The activity of the designed
molecule was then predicted by substituting its interaction
energy values into the best QSAR equations of the three
models (Table 3). In addition, the probable experimental
activity of the designed molecule was obtained from the
regression lines (Fig. 1) of the three CoRIA models. Table 5
shows the predicted and (probable) experimental activities
of the designed molecule along with those of molecule 31.
The higher activity of the newly designed molecule over its
parent is attributed to its improved interactions with the key
residues of HIV-1 integrase enzyme, as explained by the
CoRIA approach. Thus, CoRIA methodology can be
applied convincingly to design more potent inhibitors of
HIV-1 integrase enzyme.

Conclusions

In recent years, the structure–activity relationships of many
HIV-1 integrase inhibitors have been studied but most of
these earlier QSAR studies were performed independently
of integrase structure. Comparative residue interaction
analysis (CoRIA) [75–77] is a receptor-based QSAR
formalism that makes use of the 3D structures of small
molecules as well as their macromolecular targets to dig out
both the type as well as the nature of important interactions
between ligands and receptors. In the present work, this
approach was applied to an extremely diverse set of
integrase inhibitors, in order to explore events that are
significant in the ligand–integrase recognition process. The
CoRIA methodology has efficiently extracted crucial
residues (as well as type of interactions) in the integrase
enzyme that have already been claimed by X-ray crystal-
lography and site-directed mutagenesis studies to be
essential in ligand–receptor binding. As indicated by our
study, the van der Waals interaction of residues Asp64 and

Table 5 Activity values of 5-CITEP, molecule 31 and the newly designed molecule

CoRIA Model Activity 

(pIC50) 1 2 3 
Structure 

5-CITEP 

Predicted Activity  5.28 5.36 5.25 

Experimental Activity 5.65 
C

O
N

H
N

N

N

HO NH

Cl

 
Molecule 31 

Predicted Activity  4.85 4.90 4.88 

Experimental Activity 4.92 

C

O

HO

N

OHO

CH2

 
Designed Molecule 

Activity predicted from 

the best QSAR model 
5.22 5.18 4.45 

Activity predicted from 

the regression line 
5.40 5.33 4.45 

C

O

HO

N

OHO

CH2

HO  
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Asp116 in the enzyme, and the Columbic interaction of
residue Thr66 with the ligands should be fortified to
enhance binding affinity. On the other hand, reducing
the strength of Columbic interaction with Val77 will favour
the overall binding of integrase inhibitors. Interaction of the
inhibitors with receptor residues Glu152 and Lys159 is
quite sensitive and will require careful exploitation in order
to control activity. In addition to these interactions, CoRIA
analysis also highlighted other residues, like Gly149 and
Val72, that have not yet been signalled by earlier studies
but that may play a hidden role in providing additional
stabilisation of a ligand's explicit receptor binding. In a
nutshell, careful optimisation of the interaction of ligands
with the specific integrase residues revealed by the CoRIA
methodology can assist not only in improving the binding
affinity of existing molecules but also in designing novel,
more potent, HIV-1 integrase inhibitors.
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